
1
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

REV-03.18.2016.0

Static Analysis Alert Audits
Lexicon And Rules

William Snavely

2
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Copyright 2016 Carnegie Mellon University and IEEE

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering

Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY

MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER

INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR

MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH

RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0004189

3
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Audit Lexicon And Rules

Background

Lexicon

Rules

Future Work

Questions?

4
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Audit Lexicon And Rules

Background

5
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Background: Automatic Alert Classification

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

6
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Background: Automatic Alert Classification

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Select candidate
code bases for
evaluation

7
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Background: Automatic Alert Classification

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data
Run SA Tool(s)
collecting code alerts
and metrics (e.g.
complexity)

8
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Background: Automatic Alert Classification

Convert alerts to
common format and
map to CERT Secure
Coding Rules/CWEs

9
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Background: Automatic Alert Classification

Humans evaluate the
violations, e.g.
marking them as TRUE
or FALSE

10
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Background: Automatic Alert Classification

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data
Use the training data to
build machine learning
classifiers that predict
TRUE and FALSE
determinations for new
alerts

11
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Background: Automatic Alert Classification

What do TRUE/FALSE
mean? Are there other
determinations I can
use?

12
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

One collaborator reported using the determination True to indicate

that the issue reported by the alert was a real problem in the code.

Another collaborator used True to indicate that something was

wrong with the diagnosed code, even if the specific issue reported

by the alert was a false positive!

What is truth?

13
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Background: Automatic Alert Classification

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data Inconsistent assignment of
audit determinations may
have a negative impact on
classifier development!

14
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Solution: Lexicon And Rules

• We developed a lexicon and auditing rule set for our

collaborators

• Includes a standard set of well-defined determinations for

static analysis alerts

• Includes a set of auditing rules to help auditors make

consistent decisions in commonly-encountered situations

Different auditors should make the same

determination for a given alert!

Improve the quality and consistency of audit data for

the purpose of building machine learning classifiers

Help organizations make better-informed decisions

about bug-fixes, development, and future audits.

15
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Audit Lexicon And Rules

Lexicon

16
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Lexicon: Audit Determinations

Basic Determinations Supplemental Determinations

Audit
Determinations

True False

Complex Dependant

Unknown
(default)

Dangerous
construct

Dead

Ignore
Inapplicable
environment

Choose ONE Per Alert!

Choose ANY NUMBER
Per Alert!

Dependant

17
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Lexicon: Basic Determinations

True

• The code in question violates the condition indicated by

the alert.

• A condition is a constraint or property of validity.

- E.g. A valid program should not deference NULL pointers.

• The condition can be determined from the definition of the

alert itself, or from the coding taxonomy the alert

corresponds to.

- CERT Secure Coding Rules

- CWEs

18
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Lexicon: Basic Determinations
True Example

char *build_array(size_t size, char first) {
if(size == 0) {

return NULL;
}

char *array = malloc(size * sizeof(char));
array[0] = first;
return array;

}

ALERT: Do not
dereference

NULL pointers!

Determination:
TRUE

19
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Lexicon: Basic Determinations

False

• The code in question does not violate the condition indicated

by the alert.

char *build_array(int size, char first) {
if(size == 0) {

return NULL;
}

char *array = malloc(size * sizeof(char));
if(array == NULL) {

abort();
}
array[0] = first;
return array;

}
ALERT: Do not

dereference
NULL pointers!

Determination:
FALSE

20
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Lexicon: Basic Determinations

Complex

• The alert is too difficult to judge in a reasonable amount of

time and effort

• “Reasonable” is defined by the individual organization.

Dependent

• The alert is related to a True alert that occurs earlier in the

code.

• Intuition: fixing the first alert would implicitly fix the second one.

Unknown

• None of the above. This is the default determination.

21
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Lexicon: Basic Determinations
Dependent Example

char *build_array(size_t size, char first, char last) {
if(size == 0) {

return NULL;
}

char *array = malloc(size * sizeof(char));
array[0] = first;
array[size - 1] = last;
return array;

}

ALERT: Do not
dereference

NULL pointers!

Determination:
TRUE

ALERT: Do not
dereference

NULL pointers!

Determination:
DEPENDENT

22
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Lexicon: Supplemental Determinations

Dangerous Construct

• The alert refers to a piece of code that poses risk if it is not
modified.

• Risk level is specified as High, Medium, or Low

• Independent of whether the alert is true or false!

Dead

• The code in question not reachable at runtime.

Inapplicable Environment

• The alert does not apply to the current environments where the
software runs (OS, CPU, etc.)

• If a new environment were added in the future, the alert may
apply.

Ignore

• The code in question does not require mitigation.

23
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Lexicon: Supplemental Determinations
Dangerous Construct Example

#define BUF_MAX 128

void create_file(const char *base_name) {
// Add the .txt extension!
char filename[BUF_MAX];
snprintf(filename, 128, "%s.txt", base_name);

// Create the file, etc...
}

ALERT:
potential

buffer overrun!

Determination:
False

+
Dangerous
Construct

Seems ok…but
why not use
BUF_MAX

instead of 128?

24
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Audit Lexicon And Rules

Rules

25
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Audit Rules

Goals

• Clarify ambiguous or complex auditing scenarios

• Establish assumptions auditors can make

• Overall: help make audit determinations more consistent

We developed 12 rules

• Drew on our own experiences auditing code bases at CERT

• Trained 3 groups of engineers on the rules, and incorporated

their feedback

• In the following slides, we will inspect three of the rules in more

detail.

26
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Example Rule: Assume external inputs to the
program are malicious

An auditor should assume that inputs to a program module (e.g.

function parameters, command line arguments, etc.) may have

arbitrary, potentially malicious, values.

• Unless they have a strong guarantee to the contrary

Example from recent history: Java Deserialization

• Suppose an alert is raised for a call to readObject, citing a

violation of the CERT Secure Coding Rule SER12-J, Prevent

deserialization of untrusted data

• An auditor can assume that external data passed to the

readObject method may be malicious, and mark this alert as

True

- Assuming there are no other mitigations in place in the code

27
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Audit Rules
External Inputs Example

import java.io.*;

class DeserializeExample {
public static Object deserialize(byte[] buffer)

throws Exception {
ByteArrayInputStream bais;
ObjectInputStream ois;
bais = new ByteArrayInputStream(buffer);
ois = new ObjectInputStream(bais);
return ois.readObject();

}
}

ALERT: Don’t
deserialize
untrusted

data!

Without strong
evidence to the

contrary, assume
the buffer could be

malicious!

Determination:
TRUE

28
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Example Rule: Unless instructed otherwise,
assume code must be portable.

When auditing alerts for a code base where the target

platform is not specified, the auditor should err on the side

of portability.

If a diagnosed segment of code malfunctions on certain

platforms, and in doing so violates a condition, this is

suitable justification for marking the alert True.

29
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Audit Rules
Portability Example

int strcmp(const char *str1, const char *str2) {
while(*str1 == *str2) {

if(*str1 == '\0') {
return 0;

}
str1++;
str2++;

}

if(*str1 < *str2) {
return -1;

} else {
return 1;

}
}

ALERT: Cast to
unsigned char

before comparing!

This code would be safe on a
platform where chars are unsigned,

but that hasn’t been guaranteed!

Determination:
TRUE

30
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Example Rule: Handle an alert in unreachable
code depending on whether it is exportable.

Certain code segments may be unreachable at runtime. Also

called dead code.

A static analysis tool might not be able to realize this, and still

mark alerts in code that cannot be executed.

The Dead supplementary determination can be applied to these

alerts.

However, an auditor should take care when deciding if a piece of

code is truly dead.

In particular: just because a given program module (function,

class) is not used does not mean it is dead. The module might be

exported as a public interface, for use by another application.

This rule was developed as a result of a scenario encountered by

one of our collaborators!

31
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

Future Work

• Gather feedback on our lexicon and rules from surveys, focus

groups, experts, etc.

• Continue to refine the lexicon/rules.

• Further develop CERT’s SCALe auditing framework to fully

incorporate these concepts.

• Work with more collaborators to test the rules/lexicon in

practice.

- We have some initial feedback from two collaborators, who used our

rules to audit several hundred alerts from C and Java codebases

32
Audit Rules and Lexicon

Date 00, 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

Audit Lexicon And Rules

Questions?

